NIPPON STEEL'S STEEL SHEET PILES

Nippon Steel Corporation

Foreword

The steel sheet piles of Nippon Steel are used in many fields (port and harbor structures, river revetment, earth retention and cofferdams) and have acquired high market acceptance due to their excellent product quality and to construction efficiencies that derive from their use. Nippon Steel, drawing on a wealth of rolling, fabrication and application and further adding to the superb properties of its sheet pile, has recently developed various new products and construction methods in this field, which have also won for the company a high reputation.

Based on an accumulation of technical expertise, Nippon Steel has developed and placed on the market two versions (NSP-10H and NSP-25H) of a new line of sheet piles:"hat-type steel sheet piles 900."

Nippon Steel will continue its efforts to develop novel products that bring the properties of sheet piles into full play and to respond to more stringent and diversifying user needs in the future.

mn)

PILCO

(NOTE)

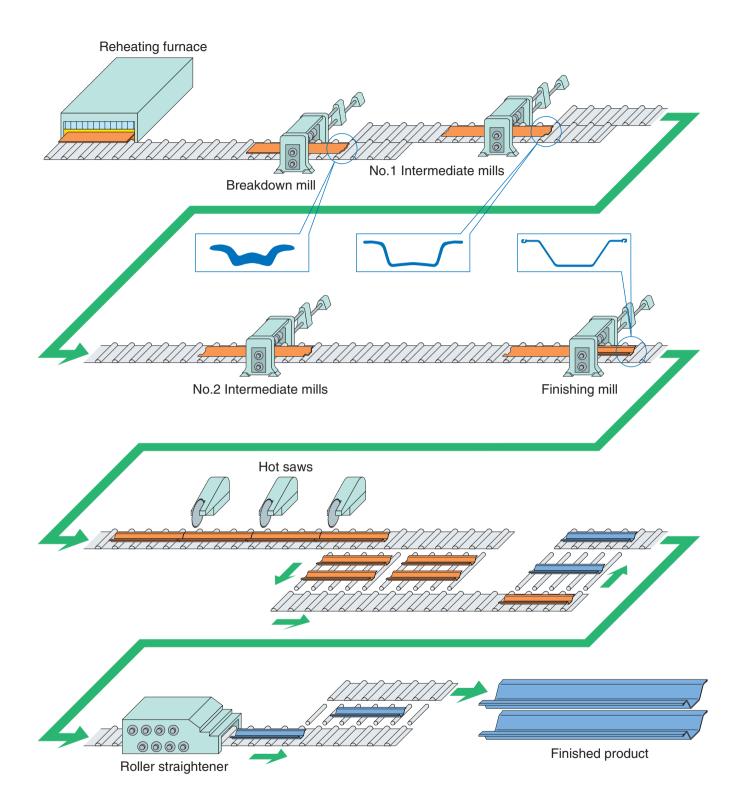
"NSP" "FSP" and "YSP" used in this brochure are Nippon Steel's internal product codes for steel sheet pile products.

Features

A Wide Selection of Shapes and Types

Sheet pile is available in a wide range of selection moduli per meter of pile wall width, ranging from 874 to 8750 cm³. This allows selection of the most economical type of sheet pile to suit the design requirements and the intended construction method.

Superb Drivability and Water tightness


Clearances of joints are tight enough to ensure excellent drivability as well as water tightness of sheet pile wall.

Contents

Foreword and Features	-1
Production Process	— 2
Products	— 3
◆Hat-type sheet pile 900 (New)	— 3
♦U type sheet pile	— 6
♦Box-type sheet pile	-11
Straight web-type sheet pile	
Usage	-14
(1) River revetment	
(2) Port and harbor structures	-15
(3) Retaining wall for road and house construction ————	-15
(4) Erosion and sedimentation control dam in mountain area	-15
Driving Method	-16
♦ Vibration method	-16
Press-in method	-17

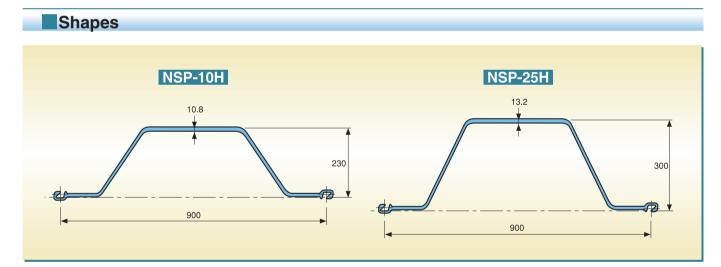
Notice: While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader's risk and no warranty is implied or expressed by Nippon Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the Nippon Steel office for the latest information.

Production Process

Hat-type sheet pile 900 (New)

Superb Drivability

Large sectional area of the hat type sheet pile realizes superior drivability.


High Structural Reliability

No reductions are required in sectional performance to account for possible lack of shear force transmission such as is true for conventional type of steel sheet piles.

Excellent Cost-effectiveness

The amount of steel per unit wall can be reduced, resulting in improved total cost.

Sectional Properties

	Dimension			Per pile			Per 1 m of pile wall width				
Туре	Effective width W	Effective height h	Thickness	Sectional area	Moment of inertia	Section modulus	Unit mass	Sectional area	Moment of inertia	Section modulus	Unit mass
	mm	mm	mm	cm ²	cm⁴	cm ³	kg/m	cm²/m	cm4/m	cm³/m	kg/m ²
NSP-10H	900	230	10.8	110.0	9,430	812	86.4	122.2	10,500	902	96.0
NSP-25H	900	300	13.2	144.4	22,000	1,450	113	160.4	24,400	1,610	126

Hat-type sheet pile 900 (New)

Material Quality

Classification	Crada		Ceq.(%)					
Classification	Grade	С	Si	Mn	Р	S	Free N	Ceq.
Weldable hot rolled steel sheet pile	SYW295	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.44 max.
JIS A 5523	SYW390	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.46 max.

Note: Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14

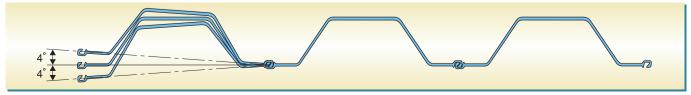
Classification	Crada	Mechanical Properties						
	Grade	Yield point N/mm ²	Tensile Strength kg/m	Elongation %	Charpy V-notch toughness J			
Weldable hot rolled steel sheet pile	SYW295	295 min.	490 min.	17 min.	43 min.			
JIS A 5523	SYW390	390 min.	540 min.	15 min.	43 min.			

Note: Chemical composition and mechanical properties conform to JIS A 5523-2006. N is shown by total in accordance with section 5. Note 2 of JIS A 5523-2006. Grade of S 355GP (EN 10248 Part 1) is also available upon request. Grade SYW390 requires consultation prior to order.

Tolerance of Shapes and Dimensions

			4
	Item	Tolerance	
	Full width	+10mm -5mm	Thickness Heigh
	Height	±4%	Effective width
	Under 10 mm	±1.0mm	Full width
Thickness	10 mm and over to 16 mm excl.	±1.2mm	
	16 mm and over	±1.5mm	
	Length	+Not specified 0	
Deflection	10 m and under in length	Full length (m) \times 0.12% max.	
Defiection	Over 10 m in length	(Full length $-10m$) $\times 0.10\% + 12mm$ max.	
Camber	10 m and under in length	Full length (m) \times 0.25% max.	
Camper	Over 10 m in length	(Full length $-10m$) \times 0.20% $+25mm$ max.	
Differen	ce in vertically cut section	Within 4% of width	

Note: 1.Tolerances of shapes and dimensions of Nippon Steel sheet piles are based on the "Standard Specifications for Steel Sheet piles" prepared by the Committee on Technological Research on Sheet Piles. They are aimed at securing improved construction efficiency and specified product quality and dimensional accuracy by users. (Tolerances shown above satisfy JIS A5523-2006 and offer additionally specified items.)

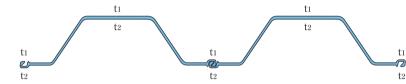

2. "Deflection" stands for the deviation from the plain parallel to the sheet pile wall, and "Camber" stands for the deviation from the plain for vertical to the sheet pile wall.

Compatibility

Interlocks of 10H version and 25H version are compatible.

Deviation Angle

Each interlock allows a certain rotation. The maximum angle of deviation (the interlock swing) for the combination of the identical versions of hat-type sheet piles is shown in the figure below.

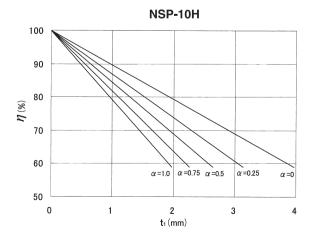


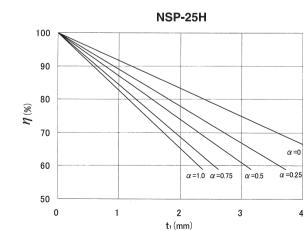
Sectional Properties after Corrosion

Sectional properties of hat-type sheet pile after 1 mm corrosion loss per side, totaling 2 mm in both sides, are shown in the table below.

	Sectional Properties	without corrosion loss	Sectional Properties with 1 mm corrosion loss per side				
Туре	I_0 (cm ⁴ /m)	Z ₀ (cm ³ /m)	η (%)	<i>I</i> (cm ⁴ /m)	Z (cm ³ /m)		
NSP-10H	10,500	902	79	8,300	713		
NSP-25H	24,400	1,610	82	20,000	1,320		

n




- *Io*, *Zo* : Moment inertia and section modulus without corrosion loss
 - : Reduction ratio after corrosion
- : Moment inertia and section modulus I, Zafter corrosion

Steps to calculate sectional properties after corrosion;

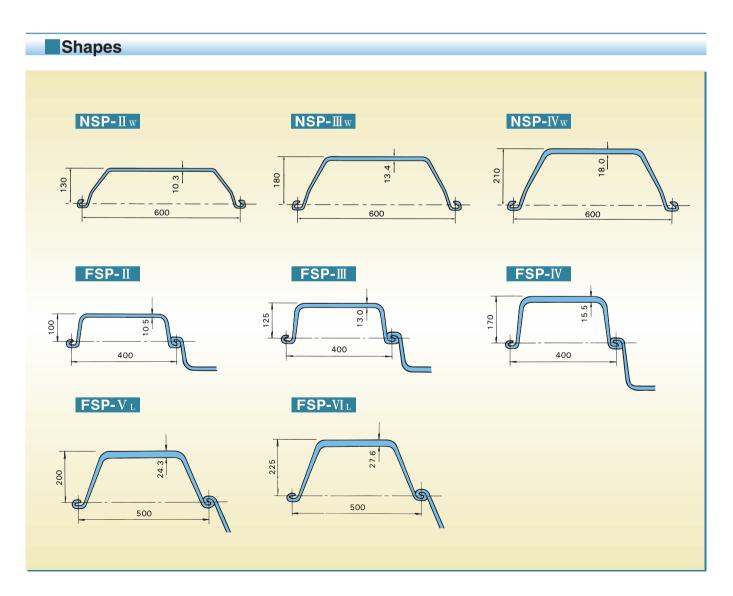
- (1) Assume corrosion rate and life time of facility, and calculate the corrosion loss of marine side t_1 (mm) and that of land side t_2 (mm).
- (2) Calculate corrosion loss rate $a (=t_2/t_1)$.
- (3) By using the corrosion loss of marine side, t_1 (mm) and the corrosion loss rate a, obtain the reduction ratio of sectional properties, η from the following graphs.
- 4 Calculate the sectional properties after corrosion loss, Z and I by multiplying the sectional properties before corrosion loss, Z_0 , and I_0 by the reduction ratio *n*

Section modulus $Z = Z_0 \times \eta$ Moment inertia $I = I_0 \times \eta$

sectional properties, η : reduction ratio of sectional properties n after corrosion (%)

 t_1, t_2 : corrosion loss of marine side and land side (mm)

Graphs for obtaining the reduction ratio of


- : corrosion loss rate, $a = t_2/t_1$ α
- Note : Only the illustrated ranges are effective in the following graphs.

4

- U type sections have been widely used for various types of permanent and temporary structures, and one of the most familiar sheet piles among designers as well as users.
- •FSP-II, III, IV, V_L and VI_L are solidly designed. These sections are especially suitable for repeated use, and have acquired high market acceptance from users.
- U type sections offer section modulus ranging from 874 cm³ to 3820 cm³ per linear meter of wall.

Sectional Properties

+		
	ے	N
×-		\b -×
—	W	

	C	Dimensio	n		Per pile				Per 1 m of pile wall width			
Туре	Effective width W	Effective height h	Thickness t	Sectional area	Moment of inertia	Section modulus	Unit mass	Sectional area	Moment of inertia	Section modulus	Unit mass	
	mm	mm	mm	cm ²	cm ⁴	cm ³	kg/m	cm²/m	cm⁴/m	cm³/m	kg/m ²	
FSP-II	400	100	10.5	61.18	1,240	152	48.0	153.0	8,740	874	120	
FSP-Ⅲ	400	125	13.0	76.42	2,220	223	60.0	191.0	16,800	1,340	150	
FSP-IV	400	170	15.5	96.99	4,670	362	76.1	242.5	38,600	2,270	190	
FSP-VL	500	200	24.3	133.8	7,960	520	105	267.6	63,000	3,150	210	
FSP-VIL	500	225	27.6	153.0	11,400	680	120	306.0	86,000	3,820	240	
NSP-II w	600	130	10.3	78.70	2,110	203	61.8	131.2	13,000	1,000	103	
NSP-Ⅲw	600	180	13.4	103.9	5,220	376	81.6	173.2	32,400	1,800	136	
NSP-IVw	600	210	18.0	135.3	8,630	539	106	225.5	56,700	2,700	177	

Material Quality

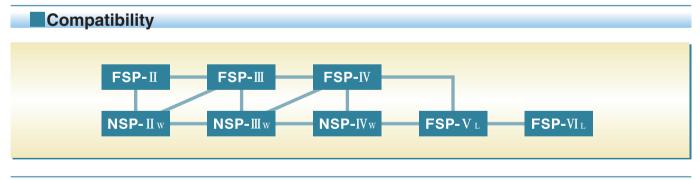
Oleccification	Orrede	Chemical composition (%)							
Classification	Grade	С	Si	Mn	Р	S	N	Ceq.	
Weldable hot rolled steel	SYW295	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.44 max.	
sheet piles JIS A 5523	SYW390	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.46 max.	
Hot rolled steel sheet piles	SY295	_	_	_	0.04 max.	0.04 max.	_	_	
JIS A 5528	SY390	_	_	_	0.04 max.	0.04 max.	_	_	

Note: Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14

Classification	Crada	Mechanical Properties						
Classification	Grade	Yield point (N/mm ²)	Tensile strength(N/mm ²)	Elongation (%)	Charpy V-notch toughness $[0C^{\circ}](J)$			
Weldable hot rolled steel	SYW295	295 min.	490 min.	17 min.	43 min.			
sheet piles JIS A 5523	SYW390	390 min.	540 min.	15 min.	43 min.			
Hot rolled steel sheet piles	SY295	295 min.	490 min.	17 min.	—			
JIS A 5528	SY390	390 min.	540 min.	15 min.	—			

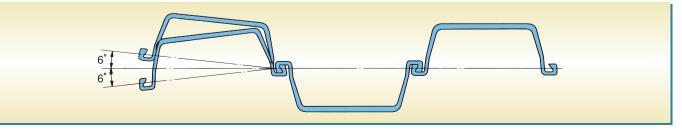
Note: Chemical composition and mechanical properties conform to JIS A 5523-2006 or JIS A 5528-2006 .

N is shown by total in accordance with section 5. Note 2 of JIS A 5523-2006. Grade of S 355GP (EN 10248 Part 1) is also available upon request.


U type sheet pile

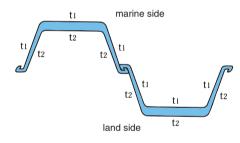
Tolerance of Shapes and Dimensions

	Item	Tolerance	(Reference) Tolerance in JIS
Total width		Effective width $\times \pm 1\%$ (+6mm and -5mm for II w,III w and IV w)	+10mm — 5mm
	Total Height	\pm 4%	\pm 4%
Under 10 mm		+1.0mm -0.3mm	±1.0mm
Thickness	10 mm and over to 16 mm excl.	+1.2mm -0.3mm	±1.2mm
	16 mm and over	+1.5mm -0.3mm	±1.5mm
	Length	+Not specified 0	+Not specified 0
Deflection	10 m and under in length	Full length $\times 0.1\%$ max.	Full length × 0.12% max.
Deflection	Over 10 m in length	20mm max.	$(Full length-10m) \times 0.10\%$ +12mm max.
Camber	10 m and under in length	Full length × 0.2% max.	Full length × 0.25% max.
Camber	Over 10 m in length	20mm max.	$(Full length-10m) \times 0.20\%$ +25mm max.
Differen	ce in vertically cut section	Within 4% of width	Within 4% of width
Dif	ference in total width	4mm and under in difference between maximum and minimum total widths within 1m length from the edge	Not specified
	Edge deflection	The values measured at the topside 1m from the edge and up to 1.5mm, or 1/2 the values measured at the tangent side and up to 1.5mm	Not specified


Note: 1. Tolerances of shapes and dimensions of Nippon Steel sheet piles are based on the "Standard Specifications for Steel Sheet piles" prepared by the Committee on Technological Research on Sheet Piles. They are aimed at securing improved construction efficiency and specified product quality and dimensional accuracy by the users. (The tolerances shown above satisfy JIS A5523-2006 or JIS A5528-2006 and offer additionally specified items.)

2. "Deflection" stands for the deviation from the plain parallel to the sheet pile wall, and "Camber" stands for the deviation from the plain for vertical to the sheet pile wall.

Deviation Angle


Each interlock allows a certain rotation. The maximum angle of deviation (the interlock swing) for the combination of the identical versions of hat-type sheet piles is shown in the figure below.

Sectional Properties after Corrosion

Sectional properties of U type sheet pile after 1 mm corrosion loss per side, totaling 2 mm in both sides, are shown in the table below.

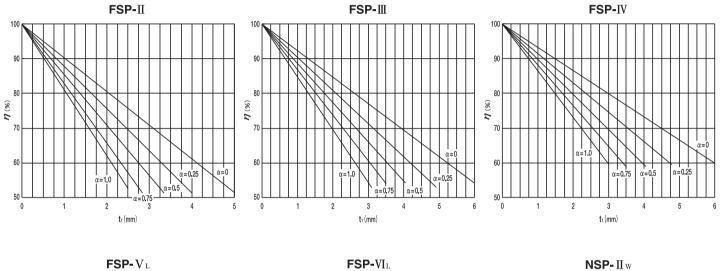
	Sectional Properties	without corrosion loss	Sectional Properties with 1 mm corrosion loss per side			
Туре	I_0 (cm ⁴ /m)	Z_0 (cm ³ /m)	η (%)	<i>I</i> (cm ⁴ /m)	Z (cm ³ /m)	
FSP-II	8,740	874	81	7,080	708	
FSP-III	16,800	1,340	85	14,300	1,140	
FSP-IV	38,600	2,270	86	33,200	1,950	
FSP-VL	63,000	3,150	91	57,300	2,870	
FSP-VIL	86,000	3,820	92	79,100	3,510	
NSP-II w	13,000	1,000	81	10,500	810	
NSP-Ⅲw	32,400	1,800	85	27,500	1,530	
NSP-IVw	56,700	2,700	88	49,900	2,380	

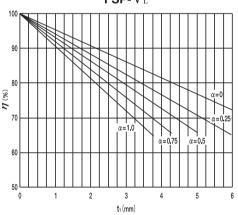
- *Io, Zo* : Moment inertia and section modulus without corrosion loss
- η : Reduction ratio after corrosion
- *I*, *Z* : Moment inertia and section modulus after corrosion

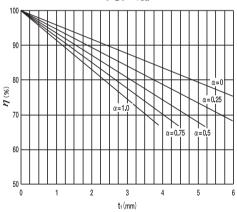
Steps to calculate sectional properties after corrosion;

- Assume corrosion rate and life time of facility, and calculate the corrosion loss of marine side t₁ (mm) and that of land side t₂ (mm).
- (2) Calculate corrosion loss rate $\alpha (=t_2/t_1)$.
- (3) By using the corrosion loss of marine side, t_1 (mm) and the corrosion loss rate a, obtain the reduction ratio of sectional properties, η from the following graphs.
- (4) Calculate the sectional properties after corrosion loss, *Z* and *I* by multiplying the sectional properties before corrosion loss, Z_0 , and I_0 by the reduction ratio η

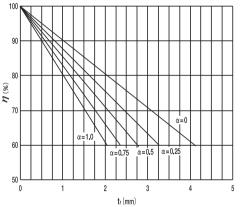
Section modulus $Z=Z_0 \times \eta$ Moment inertia $I=I_0 \times \eta$

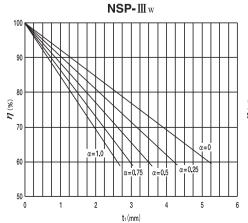


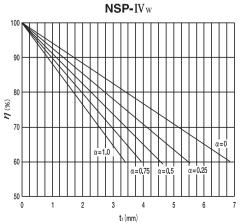

Graphs for obtaining the reduction ratio of sectional properties, η

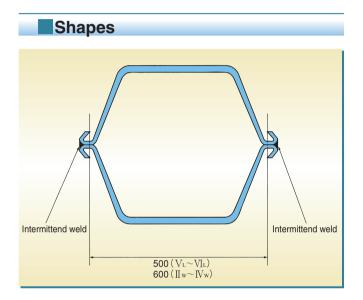

- : reduction ratio of sectional properties after corrosion (%) η
- t_1, t_2 : corrosion loss of marine side and land side (mm)

: corrosion loss rate, $a = t_2/t_1$ a

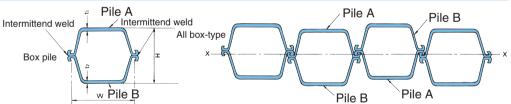

Note : Only the illustrated ranges are effective in the following graphs.



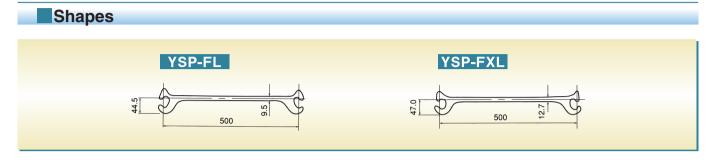




Box type sheet pile


Box type sections are made of two U type sections welded together into a box shape. Appropriate combination of sheet piles makes available a wide range of section modulus, and depending upon design requirements, the most suitable and economical combination can be selected.

- Having section modulus ranging from 4170 cm³ to 8750 cm³ per linear meter of wall, Box type sections are suited in large quay walls.
- The length of each U type sheet pile welded together into a box section can be changed to meet design conditions, and this means great economy.


Sectional Properties

Туре		Dimension			Per pile				Per 1 m of pile wall width				
. ,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	width	Effective height	Thick		Sectional area	Moment of inertia	Section	Unit mass	Sectional area	Moment of inertia		Unit mass
Pile A	Pile B	W mm	H mm	t₁ mm	t₂ mm	cm ²	cm ⁴	cm ³	kg/m	cm²/m	cm ⁴ /m	cm ³ /m	kg/m ²
$\textbf{FSP-}V_L$	$\textbf{FSP-}V_L$	500	445	24.3	24.3	267.6	79,000	3,550	210	535.2	158,000	7,100	420
FSP-VIL	FSP-VL	500	471	27.6	24.3	286.8	92,900	3,870	225	573.6	186,000	7,740	450
FSP-VIL	FSP-VIL	500	497	27.6	27.6	306.0	109,000	4,370	240	612.0	217,000	8,750	480
NSP-Ⅲw	NSP-Ⅲw	600	404	13.4	13.4	207.8	50,600	2,500	163	346.3	84,300	4,170	272
NSP-IVw	NSP-Ⅲw	600	435	18.0	13.4	239.2	66,400	2,860	188	398.7	111,000	4,770	313
NSP-IVw	NSP-IVw	600	466	18.0	18.0	270.6	86,500	3,710	212	451.0	144,000	6,190	353

Straight Web-Type Sheet Pile

 This type of sheet pile boasts extremely high tensile strength at its interlocking sections up to 5.88 MN per linear meter of joint length, and is suited for use in cellular type structure such as quay walls, seawalls of manmade island, cofferdams and other similar works

Sectional Properties

Туре	Dimension		Per pile				Per 1 m of pile wall width				
	Effective width W	Effective height h	Thickness t	Sectional area		Section modulus	Unit mass	Sectional area	Moment of inertia	Section modulus	Unit mass
	mm	mm	mm	cm ²	cm⁴	cm ³	kg/m	cm²/m	cm4/m	cm³/m	kg/m ²
YSP-FL	500	44.5	9.5	78.57	184	45.7	61.7	157.1	396	89	123
YSP-FXL	500	47.0	12.7	98.36	245	60.3	77.2	196.7	570	121	154

Note: 1. Straight web –type sheet pile of SYW295 and SY295 offers joint strength of 3.92 MN/m and over for YSP-FL and 5.88 MN/m and over for YSP-FXL. 2. Straight web –type sheet piles with web thickness of 12.5, 12.0 and 11.5 mm require consultation prior to order.

Material Quality

Classification	Grade	Chemical composition (%)						
Classification		С	Si	Mn	Р	S	N	Ceq.
Weldable hot rolled steel	SYW295	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.44 max.
sheet piles JIS A 5523	SYW390	0.18 max.	0.55 max.	1.50 max.	0.04 max.	0.04 max.	0.0060 max.	0.46 max.
Hot rolled steel sheet piles	SY295	_	_	_	0.04 max.	0.04 max.	_	—
JIS A 5528	SY390	—	_	_	0.04 max.	0.04 max.	_	—

Note: Ceq.=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14

Classification	Grade	Mechanical Properties						
Classification	Grade	Yield point (N/mm²) Tensile strength (N/mm²)		Elongation (%)	Charpy V-notch toughness $[0C^{\circ}](J)$			
Weldable hot rolled steel	SYW295	295 min.	490 min.	17 min.	43 min.			
sheet piles JIS A 5523	SYW390	390 min.	540 min.	15 min.	43 min.			
Hot rolled steel sheet piles	SY295	295 min.	490 min.	17 min.	_			
JIS A 5528	SY390	390 min.	540 min.	15 min.	_			

Note: Chemical composition and mechanical properties conform to JIS A 5523-2006 or JIS A 5528-2006 .

: N is shown by total in accordance with section 5. Note 2 of JIS A 5523-2006.

Tolerance of Shapes and Dimensions

	Item	Tolerance				
	Width	±4mm				
	Height	—				
	Up to 10 mm	+1.5 mm -0.7 mm				
Thickness	10 mm and over to 16 mm excl.	+ 1.5 mm - 0.7 mm				
	16 mm and over	_				
Length		+Not specified 0				
Deflection	10 m and under in length	Full length (m) \times 0.15% max.				
Dellection	Over 10 m in length	$(Full length - 10m) \times 0.10\% + 15mm max.$				
Camber	10 m and under in length	Full length (m) \times 0.20% max.				
Camber	Over 10 m in length	(Full length-10m)×0.10%+20mm max				
Diffe	erence in vertically cut section	Within 4% of width				

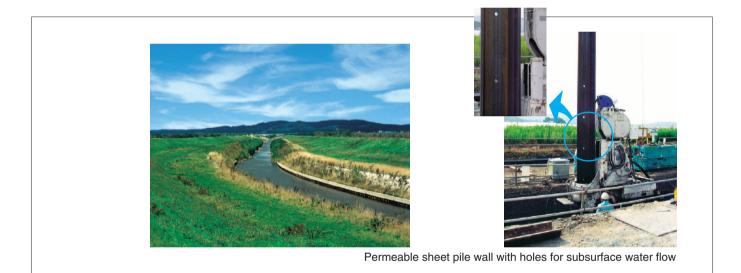
Note: 1. Tolerances shown above satisfy JIS A5523-2006 and JIS A5528-2006.

2. "Deflection" stands for the deviation from the plain parallel to the sheet pile wall, and "Camber" stands for the deviation from the plain for vertical to the sheet pile wall.

Deviation Angle

Each interlock allows a certain rotation. The maximum angle of deviation (the interlock swing) for the combination of the identical versions of straight web-type sheet piles is shown in the figure below.

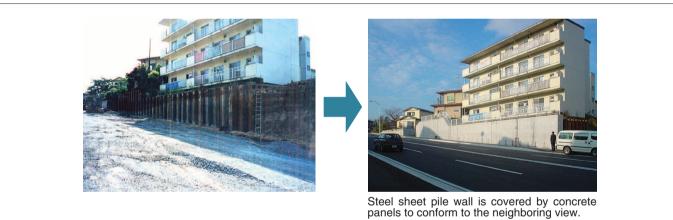
 $YSP-FL \cdots \theta = \pm 12.5^{\circ}$ $YSP-FXL \cdots \theta = \pm 10^{\circ}$



Usage

(1) River embankments

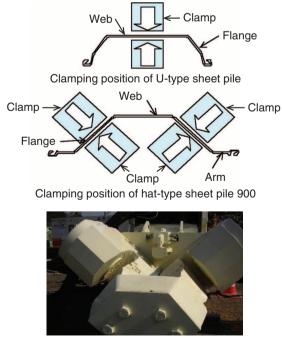
Permanent use as well as temporary cofferdam use


Subsurface water flow stoppage wall

(2) Quay walls of port facilities

(3) Earth-retaining wall for road construction

(4) Erosion and sedimentation control dam in mountain area

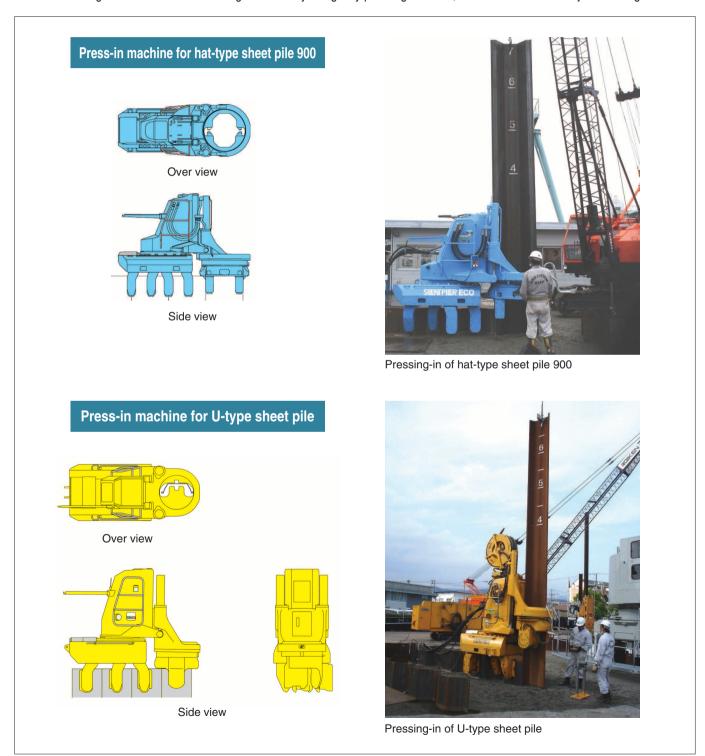


Vibration method

Sheet piles are driven into the ground by transferring to them up-and-down vibratory forces generated by vibratory hammer. Because percussion force is not used, pile head is not injured, driving efficiency is high and, is useful for both driving and pulling piles.

Driving of hat-type sheet pile 900

Clamp for hat-type sheet pile 900


Driving of U-type sheet pile

Vibratory hammer equipped with clamp for hat-type sheet pile 900

Press-in method

Sheet piles are pressed-in using hydraulic mechanism by grasping the middle place of sheet pile while taking reaction by holding driven piles. Driving machine is compact, and need not crane, though it needs crane separately for hanging sheet piles. It is applicable to the driving conditions such as narrow places and low clearance places. It is also possible to drive piles in conditions of low noise and low vibration. When ground is so hard that driving is difficult by using only pressing machine, it is useful to use water jet cutter together.

On the Leading Edge:Nippon Steel

NIPPON STEEL

Head Office Nippon Steel Corporation

6-1, Marunouchi 2-chome, Chiyoda-ku, Tokyo 100-8071, Japan Phone: 81-3-6867-5409 Fax: 81-3-6867-4913

New York	Nippon Steel U.S.A., Inc., New York Office 780 Third Avenue, 34th Floor, New York, N.Y. 10017 U.S.A. Phone: 1-212-486-7150		Nippon Steel Southeast Asia Pte. Ltd. 16 Raffles Quay #35-01 Hong Leong Building, Singapore, 048581 Phone: 65-6223-6777	Shanghai	Nippon Steel Consulting (Beijing) Company Ltd., Shanghai Office Room No.808, UNITED PLAZA 1468 Nanjing Road West, 200040 Shanghai, P.R. China
Chicago	Nippon Steel U.S.A., Inc., Chicago Office 900 North Michigan Avenue, Suite 1820 Chicago, Illinois 60611 U.S.A. Phone: 1-312-751-0800	Bangkok	Nippon Steel (Thailand) Company Limited Thosapol Land 3 Building 4th Floor, 947 Moo 12 Bangna-Trad Rd., km3 Bangna, Bangkok 10260 Thailand Phone: 66-2-744-1480	Guangzhou	Phone: 86-21-6247-9900 Nippon Steel Consulting (Beijing) Company Ltd., Guangzhou Office Room No.1235, The Garden Tower
Duesseldor	f Nippon Steel Corporation, European Office Am Seestern 8, 40547 Düesseldorf, Federal Republic of Germany Phone: 49-211-5306680	São Paulo	Nippon Steel Empreendimentos Siderúrgicos Ltda. Av. Paulista, 283-5° Andar Conj. 51/52	New Delhi	368 Huanshi Dong Lu 510064 Guangzhou, P.R. China Phone: 86-20-8386-8178
Sydney	Nippon Steel Australia Pty. Limited Level 24, No.1 York Street, Sydney N.S.W. 2000 Australia Phone: 61-2-9252-2077	Beijing	Bela Vista-CEP 01311-000-São Paulo/SP Phone: 55-11-3736-4666 Nippon Steel Consulting (Beijing) Company Ltd., Beijing Office Room No.5002, Chang Fu Gong Center Jian Guo Men Wai Da Jie 100022 Beijing, P.R. China Phone: 86-10-6513-8593	New Delhi	Nippon Steel Corporation New Delhi Liaison Office Eros Corporate Tower, Nehru Place, New Delhi 110019 India Phone: 91-11-4223-5360

STEEL SHEET PILES